

Multimodal properties of photoresponsive neurons in *Onchidium*

Takako Nishi¹, and Kyoko Shimotsu²

¹Laboratory of Physiology, Institute of Natural Sciences, Senshu University, Japan, ²Department of Neurology, Kagoshima University Graduate School of Medical and Dental Sciences, Japan.

The intrinsically photoresponsive neurons in the abdominal ganglion of mollusk *Onchidium*, named Ip-1 and Ip-2 respond to light with slow hyperpolarization. In the present study, it has shown that ASW with 5% Carbon dioxide (CO₂) evoked depolarization in Ip-2/1. The pH of ASW containing 5% CO₂ dropped from 7.8 to 6.0. Depolarization induced by CO₂ in Ip-2/1 could be caused by acidification (H⁺) derived from H₂CO₃, or CO₂ gas itself. Adding H⁺ to ASW induced the depolarization in Ip-2/1, under condition in which membrane potentials were depolarized 5-10mV from their resting membrane potentials. On the contrary, ASW containing 5% CO₂ induced depolarization in Ip-2/1 in the wide range of membrane potentials. Furthermore, the effects of CO₂ depend on pH of ASW. These results suggest that the depolarization induced by adding CO₂ are produced by H⁺ and CO₂ gas synergistically. Amphibian mollusk *Onchidium* open a pneumostome for aero-breathe. In the previous studies, it has shown that Ip-2/1 activities contribute the pneumostome opening. 5% CO₂ in the air enlarged the pneumostome's opening extremely. The activities of pneumostome could be controlled by multimodal neuron, photoresponsive, H⁺ and CO₂-sensing neurons, Ip-2/1.