

Modulation of the extracellular distribution, cellular uptake, and cellular action of phenolic compounds with thyroid hormone disrupting activity by serum proteins

Kiyoshi Yamauchi, Gobun Sai, Sakura Akiyoshi, and Akinori Ishihara

Department of Biological Science, Faculty of Science, Shizuoka University, Japan

To clarify the factors that influence the biological effects of endocrine disrupting chemicals within target cells, we investigated the interaction of [¹²⁵I]2,4,6-triiodophenol and ioxynil, potent thyroid hormone disrupting chemicals, with serum proteins from rainbow trout (*Onchorhynchus mykiss*), bullfrog (*Rana catesbeiana*), chicken (*Gallus gallus*), pig (*Sus scrofa domesticus*), and rat (*Rattus norvegicus*), using native polyacrylamide gel electrophoresis, gel filtration chromatography, and ligand binding assay. [¹²⁵I]-chemicals bound weakly to proteins in trout and bullfrog serum, and strongly to proteins in chicken, pig, and rat serum samples. Candidate chemical-binding proteins included lipoproteins in trout, bullfrog, and female chicken serum; albumin in bullfrog, chicken, pig, and rat serum; and transthyretin (TTR) in chicken, pig, rat, and mouse serum. A weak interaction of [¹²⁵I]-chemicals with tadpole serum proteins accelerated [¹²⁵I]-chemical cellular uptake in vitro. The cellular uptake of [¹²⁵I]-chemicals suggested the presence of phenol-specific cellular uptake system. The differences in the molecular and binding properties of serum chemical-binding proteins among vertebrates, and a phenol-specific cellular uptake system would affect in part the cellular actions of these chemicals.