

Chemotactic response of the nematode *Caenorhabditis elegans* to sodium acetate was enhanced by pre-exposure to the same chemical

Tetsuya Matsuura, Takayuki Oda, Genta Hayashi, Daisuke Sugisaki, and Mitsuyuki Ichinose

Department of Welfare Engineering, Faculty of Engineering, Iwate University, Japan.

We investigated the chemotactic response of a wild-type nematode (*Caenorhabditis elegans*) to water-soluble sodium acetate (Na-Ace) after pre-exposure to this attractant. The response to 1.0 M Na-Ace of the non-exposed control nematodes was significantly lower than that of the nematodes that were pre-exposed to 1.0 M Na-Ace for 90 min. The increase in the response to Na-Ace was observed up to 6 hr but not at 12 hr after exposure. To clarify the mechanism of an enhancement of the chemotactic response, several mutants were used. The chemotactic response of the pre-exposed *tph-1* and *bas-1* mutants, whose main defect was serotonin secretion, was enhanced in comparison with that of the control mutants ($p<0.01$). However, the *cat-1* and *cat-2* mutants, which are defective in the secretions of both serotonin and dopamine and of only dopamine, respectively, showed no enhancement of the response to Na-Ace even when they were pre-exposed to the chemical. When the *cat-1* and *cat-2* mutants were pre-exposed to Na-Ace and bred in the presence of 40 mM dopamine, these mutants were enhanced their response to Na-Ace ($p<0.05$). These results suggest that the enhancement of chemotactic response to Na-Ace after pre-exposure to this chemical is modulated by dopaminergic neurotransmission.