

Changes of Na^+/K^+ -ATPase isoform expression in gills and kidneys of euryhaline pufferfish (*Tetraodon nigroviridis*) acclimated to hypo- and hypertonic environments

Dong-Yang Lai, Cheng-Hao Tang, and Tsung-Han Lee

Department of Life Sciences, National Chung-Hsing University, Taiwan

Na^+/K^+ -ATPase (NKA) activity in osmoregulatory organs of euryhaline teleosts exhibited adaptive changes for sustaining osmotic homeostasis upon salinity challenge. Composed of α and β subunit, NKA is a primary active transporter protein ubiquitously expressed in animal cell membrane. NKA α subunit transports cations and couples active transport by hydrolysis of ATP. β subunit is necessary for functional stabilization of mature α subunit. Compositional changes in various α and β subunit isoforms is one of the regulatory mechanisms for alteration of NKA activity. In this study, we identified six NKA α - and β -isoforms from *Tetraodon nigroviridis* genome by bioinformatic tools, and named these isoforms based on the analysis of phylogenetic tree. Real-time PCR was subsequently used to examine the transcript expression of these isoforms in gills and kidneys of fresh water- and seawater-acclimated pufferfish. The results showed that expression of branchial $\alpha 1a$ / $\alpha 1b$ and renal $\alpha 1a$ / $\alpha 3a$ altered with environmental salinities. Among the β -isoforms, mRNA abundance of gill $\beta 1b$ and kidney $\beta 1a$ / $\beta 1c$ was salinity-dependent. Comparison of mRNA expression in osmoregulatory organs of all NKA α - and β -isoforms found in the pufferfish genome illustrated possible mechanisms leading to adaptive changes of NKA activity in this euryhaline model fish.