

Ion transporters involved in excretion of Ca^{2+} , SO_4^{2-} , B(OH)_4^- , and Mg^{2+} by seawater fish

Akira Kato^{1,3}, Yukihiro Kurita¹, Tsutomu Nakada¹, Zinia Islam¹, Takayuki Muro¹, Yuuri Kimura¹, Takahiro Umezawa¹, Naoko Hayashi¹, Hiroyuki Doi², Min-Hwang Chang³, Michael F. Romero³, and Shigehisa Hirose¹

¹Department of Biological Sciences, Tokyo Institute of Technology, Japan, ²Shimonoseki Marine Science Museum “Kaikyokan,” Shimonoseki Academy of Marine Science, Japan, ³Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, USA.

The body fluid of most marine teleosts is hyposmotic to seawater (SW). To balance passive water loss, marine teleosts drink SW, absorb water, and eliminate salts from the gill (Na^+ , Cl^- , and K^+), intestine (CaCO_3 and MgCO_3), and kidney (Mg^{2+} , SO_4^{2-} , Ca^{2+} , and boric acid). To understand the mechanisms of intestinal and renal excretion, we identified ion transporters expressed in the epithelia and analyzed their localizations and activities. Mefugu (river puffer, *Takifugu obscurus*) is an ideal fish species for such studies since it is a euryhaline species and the complete genome sequence of a close relative torafugu (tiger puffer, *Takifugu rubripes*), a marine fish, is available. Our studies on SW-acclimated mefugu have suggested that: (i) a basolateral Na^+ - $n\text{HCO}_3^-$ cotransporter NBCe1 (Slc4a4) and apical Cl^- / $n\text{HCO}_3^-$ exchangers (Slc26a6) are involved in HCO_3^- excretion across the intestinal epithelium and carbonate formation; (ii) an apical $n\text{Na}^+/\text{Ca}^{2+}$ exchanger NCX2 (Slc8a2), apical $\text{Cl}^-/\text{SO}_4^{2-}$ exchangers (Slc26a6), and an apical borate transporter (Slc4a11) are involved in renal excretion of Ca^{2+} , SO_4^{2-} , and borate, respectively; (iii) a basolateral Mg^{2+} transporter (Slc41a1) is involved in renal tubular excretion of Mg^{2+} ; and (iv) an apical Na^+/K^+ - 2Cl^- cotransporter NKCC2 (Slc12a1) is involved in renal NaCl reabsorption and urinary concentration.