

Hemoglobin - Adaptations to environmental and metabolic constraints, with special reference to temperature as modulating effector

Roy E. Weber

Zoophysiology, Institute of Biological Sciences, University of Aarhus, Denmark

Hemoglobin (Hb) is paradigm for studying molecular mechanisms underlying adaptive traits. In transporting O₂ from respiratory surfaces to metabolizing tissues, it directly links aerobic metabolism with environmental conditions. Hb-O₂ binding is commonly cooperative (described by sigmoid shaped O₂ binding curves) and decreased by red cell allosteric effectors (protons, CO₂, lactate, organic phosphates and chloride anions) that modulate O₂ loading/unloading in response to changes in environmental and metabolic dictates. Given the exothermic nature of heme oxygenation, blood O₂ affinity is moreover decreased by rising temperature. Although this temperature dependence enhances O₂ unloading in warm tissues with increased O₂ requirement, it is potentially maladaptive in regionally-heterothermic animals, where it may hamper O₂ unloading in cold extremities (arctic mammals) or cause excessive O₂ release in warm organs (muscles, brains or eyes of fast-swimming fish).

Following brief illustration of key intraspecific adjustments in Hb-O₂ affinity (changes in the levels of allosteric effectors) and genetically-coded, interspecific adaptations (that commonly involve differences in Hb structure), the treatise focuses on reductions in the temperature sensitivities encountered in Hbs of regionally-heterothermic animals (including extinct woolly mammoths), and their molecular underpinnings, specifically enthalpic contributions from endothermic dissociation of effector ions that reduces the overall exothermy of Hb-oxygenation.