

Altitudinal differentiation in hemoglobin function in birds and small mammals

Jay F. Storz¹, Joana Projecto-Garcia¹, Zachary A. Cheviron¹, Chandrasekhar Natarajan¹, Hideaki Moriyama¹, Roy E. Weber², & Angela Fago²

¹School of Biological Sciences, University of Nebraska, USA, ²Zoophysiology, Department of Biological Sciences, Aarhus University, Denmark

Some of the best prospects for identifying mechanisms of hemoglobin (Hb) adaptation to hypoxia are afforded by mechanistic studies of Hb polymorphism in species that are continuously distributed across steep altitudinal gradients. Here we report the results of combined genetic and functional analyses of Hb polymorphism in two such species: (1) the rufous-collared sparrow (*Zonotrichia capensis*), a passerine bird that is distributed from sea level to elevations of >5000 m in the Andes of South America, and (2) the deer mouse (*Peromyscus maniculatus*), a murine rodent that is distributed from sea level to elevations of >4300 m in various mountain ranges of western North America. In both taxa, highland populations exhibit elevated Hb-O₂ affinities, and in both cases genetic variation in Hb function is attributable to multiple amino acid mutations that affect intrinsic O₂ affinity and the sensitivity of Hb-O₂ affinity to the inhibitory effects of allosteric effectors (organic phosphates and chloride ions). In the Hbs of highland sparrows and mice, suppressed sensitivities to allosteric effectors do not involve substitutions at known phosphate or chloride binding sites. We are currently using protein engineering experiments involving recombinant Hbs to gain insight into the structural mechanisms responsible for the observed functional changes.