

Light-dependent Regulation of Chick Pineal Gene Expression and its Role in the Circadian System
Yoshitaka Fukada

Dept. of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Japan

Among vertebrate circadian clock systems, the chicken pineal gland is unique in that it retains intrinsic phototransduction pathways for adjustment of the clock (entrainment) to the environmental 24-hr cycles. Therefore the chicken pinealocyte provides a prominent platform for studies on the light-entrainment mechanism, which is poorly understood. Here we performed a comprehensive analysis of light-inducible genes in the chicken pineal gland. Light stimulated expression of 62 genes and 40 ESTs by >2.5-fold, among which genes responsive to the heat shock and endoplasmic reticulum stress as well as their regulatory transcription factors HSF1, HSF2 and XBP1 were strongly activated when a light pulse was given at late subjective night. On the other hand, the light pulse given at early subjective night caused prominent induction of *E4bp4*, a key regulator in the phase-delaying mechanism of the pineal clock. In parallel it induced a subset of cholesterol biosynthetic genes that are targets of SREBP transcription factor. We found that the light pulse stimulated proteolytic formation of active SREBP-1 that in turn transactivated *E4bp4* expression, linking SREBP with the light-input pathway of the pineal clock. Interestingly light-activation of SREBP-regulated genes stimulated production of a neurosteroid, 7 α -hydroxypregnенolone, and this enhanced locomotor activities of the chicks.