

Molecular co-evolution of kisspeptins and GPR54s

Jae Young Seong¹, Kazuyoshi Tsutsui², and Hubert Vaudry³

¹Laboratory of G Protein-Coupled Receptors, Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea

²Department of Biology, Waseda University, Tokyo 162-8480, Japan

³INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), University of Rouen, 76821 Mont-Saint-Aignan, France

Kisspeptin and its receptor, GPR54, play a pivotal role in vertebrate reproduction. Recent advances in bioinformatic tools combined with comparative genomics have led to the identification of a large number of kisspeptin and GPR54 genes in a variety of vertebrate species. Genome duplications may have produced at least two isoforms of both ligand (KiSS1 and KiSS2) and receptor (GPR54-1 and GPR54-2). Additional isoforms of kisspeptin (KiSS1b) and GPR54 (GPR54-1b) have been found in an amphibian species, *Xenopus (Silurana) tropicalis*. Here, we discuss the evolutionary lineages of these kisspeptin and GPR54 isoforms using genome synteny and phylogenetic analyses, and possible molecular interactions between kisspeptin and GPR54 subtypes based on ligand-receptor selectivity. Together, kisspeptin and GPR54 provide an excellent model for understanding molecular coevolution of the peptide ligand and GPCR pairs.