

Membrane bilayer-mediated clustering and functional interaction of MscL, the mechanosensitive channels of large conductance from *E. coli*

Boris Martinac^{1,8,9}, Stephan L. Grage^{3,11}, Asbed M. Kelesian⁹, Tamta Turdzeladze^{3,11}, Andrew R. Battle^{1,9}, Wee C. Tay⁹, Roland P. May⁴, Stephen A. Holt⁷, Sonia Antoranz Contera¹⁰, Michael Haertlein⁴, Martine Moulin⁴, Prithwish Pal^{1,9}, Paul R. Rohde^{1,9}, V. Trevor Forsyth^{4,12}, Anthony Watts², Kerwyn Casey Huang⁵, Anne S. Ulrich^{3,6,11}

¹Victor Chang Cardiac Research Institute, Darlinghurst, Australia, ²Biomembrane Structure Unit, Department of Biochemistry, Oxford, University of Oxford, United Kingdom, ³Karlsruhe Institute of Technology, Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany, ⁴Partnership for Structural Biology, Institut Laue-Langevin, Grenoble, France, ⁵Department of Bioengineering, Stanford University, Stanford, California, ⁶DFG-Center for Functional Nanostructures, Karlsruhe, Germany, ⁷ISIS, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, United Kingdom, ⁸St Vincent's Clinical School, University of New South Wales, Sydney, Australia, ⁹School of Biomedical Sciences, University of Queensland, Brisbane, Australia, ¹⁰Department of Physics, University of Oxford, Oxford, United Kingdom, ¹¹Karlsruhe Institute of Technology, Institute of Organic Chemistry, Karlsruhe, Germany, ¹²EPSAM/ISTM, Keele University, Staffordshire, United Kingdom

Mechanosensitive channels allow bacteria to respond to osmotic stress by opening a nanometer-sized pore in the cellular membrane. Most studies have focused on individual proteins and assumed no interactions with neighboring proteins. In this study we systematically observed the formation of MscL clusters over a wide range of protein/lipid ratios in lipid bilayers of varying lipid composition. We evaluated the spatial distribution of channels in a lipid bilayer using patch-clamp electrophysiology, fluorescence and atomic force microscopy, and neutron scattering and reflection techniques, coupled with mathematical modelling of the mechanics of a membrane crowded with proteins. MscL is closely packed within each cluster but is still active and mechanosensitive. However, the channel activity is modulated by the presence of neighbouring proteins, indicating membrane-mediated protein-protein interactions. The underlying principles of self-assembly may also play a role in the *in vivo* behaviour of MscL since native expression levels of MscL increase from approximately five copies per bacterial cell in various stages of cell growth. Furthermore, fluorescence images from *Escherichia coli* expressing MscL-GFP fusion proteins suggest that the channel distribution is non-uniform. Collectively, these results suggest that MscL self-assembly into channel clusters plays an osmoregulatory functional role in the bacterial cell membrane.