Hemoglobin - Adaptations to environmental and metabolic constraints, with special reference to temperature as modulating effector

Roy E. Weber

Zoophysiology, Institute of Biological Sciences, University of Aarhus, Denmark

Hemoglobin (Hb) is paradigm for studying molecular mechanisms underlying adaptive traits. In transporting O_2 from respiratory surfaces to metabolizing tissues, it directly links aerobic metabolism with environmental conditions. Hb- O_2 binding is commonly cooperative (described by sigmoid shaped O_2 binding curves) and decreased by red cell allosteric effectors (protons, CO_2 , lactate, organic phosphates and chloride anions) that modulate O_2 loading/unloading in response to changes in environmental and metabolic dictates. Given the exothermic nature of heme oxygenation, blood O_2 affinity is moreover decreased by rising temperature. Although this temperature dependence enhances O_2 unloading in warm tissues with increased O_2 requirement, it is potentially maladaptive in regionally-heterothermic animals, where it may hamper O_2 unloading in cold extremities (arctic mammals) or cause excessive O_2 release in warm organs (muscles, brains or eyes of fast-swimming fish).

Following brief illustration of key intraspecific adjustments in Hb- O_2 affinity (changes in the levels of allosteric effectors) and genetically-coded, interspecific adaptations (that commonly involve differences in Hb structure), the treatise focuses on reductions in the temperature sensitivities encountered in Hbs of regionally-heterothermic animals (including extinct woolly mammoths), and their molecular underpinnings, specifically enthalpic contributions from endothermic dissociation of effector ions that reduces the overall exothermy of Hb-oxygenation.