■ 特徴的な行動
・匂い源への定位行動
神崎亮平 (2009) ロボットで探る昆虫の脳と匂いの世界-ファーブル昆虫記の謎に挑む- フレグランスジャーナル社 2009年
・フェロモン
Kaissling, K.-E. R. H. Wright Lectures on Insect Olfaction, ed. Colbow,
K. (Simon Fraser Univ., Burnaby, 1987).
Kaissling, K.-E, Kasang, G., Bestmann, H.J., Stransky, W. and Vostrowsky, O. A new pheromone of the silkworm moth Bombyx mori: sensory pathway and behavioral effect. Naturwissenschaften 65, 382-384 (1978).
Gatellier, L., Nagao, T. and Kanzaki, R. Serotonin modifies the sensitivity of the male silkmoth to pheromone. J. Exp. Biol. 207, 2487-2496 (2004).
Gatellier, L. Neuroethological studies on neuromodulation of the silkmoth brain. The graduate school of Life and Environmental Sciences, the University of Tsukuba. doctor thesis (2005).
Namiki, S., Iwabuchi, S. and Kanzaki, R. Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J. Comp. Physiol. A (2008).
■ 神経系の構造と役割
■ 脳の領域と機能
・
触角
Pophof, B. Olfactory responses recorded from sensilla coeloconica of the silkmoth Bombyx mori. Physiolosical Entomology, 22, 239-248 (1997).
Hunger, T. and Steinbrecht, RA. Functional morphology of a double-walled multiporous olfactory sensillum: the sensillum coeloconicum of Bombyx mori (Insecta, Lepidoptera). Tissue & Cell, 30, 14-29 (1998).
Steinbrecht, RA. An anomalous sensillum chaeticum with a double set of cilia and outer dendritic segments in Bombyx mori L. (Lepidoptera: Bombyxcidae). Int. J. Morphol. Embryol., 17, 83-87 (1988).
Steinbrecht, RA. The fine structure of thermo-/hygrosensitive sensilla in the silkmoth Bombyx mori: Receptor membrane substrate and sensory cell contacts. Cell Tissue Res. 255: 49-57 (1989).
Kaissling, K.-E. R. H. Wright Lectures on Insect Olfaction, ed. Colbow, K. (Simon Fraser Univ., Burnaby, 1987).
Kaissling, K.-E, Kasang, G., Bestmann, H.J., Stransky, W. and Vostrowsky, O. A new pheromone of the silkworm moth Bombyx mori: sensory pathway and behavioral effect. Naturwissenschaften 65, 382-384.
Heinbockel, T. and Kaissling, K.-E. Variability of olfactory receptor neuron responses of female silkmoths (Bombyx mori L.) to benzoic acid and (±)-linalool. J. Insect Physiol. 42, 565-578.
・触角葉
Anton S, Homberg U (1999) Antennal lobe structure. In: Hansson BS (ed)
Insect olfaction. Springer, Berlin, pp 97–124.
Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595-631.
Royet JP, Souchier C, Jourdan F, Ploye H (1988) Morphometric study of the glomerular population in the mouse olfactory bulb: numerical density and size distribution along the rostrocaudal axis. J Comp Neurol 270:559–568.
Schneider D (1964) Insect antennae. Annu Rev Entomol 9:103-122.
・触角葉の構造
Kanzaki R, Soo K, Seki Y and Wada S (2003) Projections to higher olfactory
centers from subdivisions of the antennal lobe macroglomerular complex of the
male silkmoth. Chem Senses 28: 113-130.
Kazawa T, Namiki S, Fukushima R,
Terada M, Soo K and Kanzaki R (2009) Constancy and variability of glomerular
organization in the antennal lobe of the silkmoth. Cell Tissue Res 336:119-136.
Seki Y, Aonuma H and Kanzaki R (2005) Pheromone processing center in the
protocerebrum of Bombyx mori revealed by NO-induced anti-cGMP
immunocytochemistry. J Comp Neurol 481: 340-351.
・触角葉の機能
Nishino H, Yamashita S, Yamazaki Y, Nishikawa M, Yokohari F, Mizunami M (2003)
Projection neurons originating from thermo- and hygrosensory glomeruli in the
antennal lobe of the cockroach. J Comp Neurol 455: 40-55
Stopfer M,
Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on
desynchronization of odour-encoding neural assemblies. Nature
390:70-74.
Zeiner R, Tichy H (1998) Combined effects of olfactory and
mechanical inputs in antennal lobe neurons of the cockroach. J Comp Physiol A
182:467-473.
Zeiner R, Tichy H (2000) Integration of temperature and
olfactory information in cockroach antennal lobe glomeruli. J Comp Physiol A
186:717-727.
・触角葉を構成するニューロン
Dacks AM, Christensen TA, Hildebrand JG (2006) Phylogeny of a
serotonin-immunoreactive neuron in the primary olfactory center of the insect
brain. J Comp Neurol 498:727-746.
Galizia CG, Rössler W (2010) Parallel
olfactory systems in insects: anatomy and function. Annu Rev Entomol
55:399-420.
Hammer M (1997) The neural basis of associative reward
learning in honeybees. Trends Neurosci 20:245-252.
Hill ES, Iwano M,
Gatellier L and Kanzaki R (2002) Morphology and physiology of the
serotone-immunoreactive putative antennal lobe feedback neuron in the male
silkmoth Bombyx mori. Chemical Senses 27:475-483.
Homberg U, Montague RA,
Hildebrand JG (1988) antenna-cerebral pathways in the brain of the sphinx moth
Manduca sexta. Cell Tissue Res 254:255-281.
Seki Y, Kanzaki R (2008)
Comprehensive morphological identification and GABA immunocytochemistry of
antennal lobe local interneurons in Bombyx mori. J Comp Neurol 506:
93-107.
Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in
the fly brain. Cell 102:147159.
・触角葉の神経伝達物質
Berg BG, Schachtner J, Utz S, Homberg U (2007) Distribution of neuropeptides in
the primary olfactory center of the heliothine moth Heliothis virescens. Cell
Tissue Res 327:385-398.
Dacks AM, Christensen TA, Hildebrand JG (2008)
Modulation of olfactory information processing in the antennal lobe of Manduca
sexta by serotonin. J Neurophysiol 99:2077-2085.
Gatellier L, Nagao T and
Kanzaki R (2004) Serotonin modifies the sensitivity of the male silkmoth to
pheromone. J Exp Biol 207: 2487-2496
Hill ES, Okada K and Kanzaki R
(2003) Visualization of modulatory effects of serotonin in the silkmoth antennal
lobe. J Exp Biol 206: 345-352
Iwano M and Kanzaki R (2005)
Immunocytochemical identification of neuroactive substances in the antennal lobe
of the male silkworm moth Bombyx mori. Zool Sci 22: 199-211
Kloppenburg
P, Ferns D, Mercer AR (1999) Serotonin enhances central olfactory neuron
responses to female sex pheromone in the male sphinx moth Manduca sexta. J
Neurosci 19:8172-8181.
Kloppenburg P, Mercer AR (2008) Serotonin
modulation of moth central olfactory neurons. Annu Rev Entomol
53:179-190.
Sachse S, Peele P, Silbering AF, Guhmann M, Galizia CG (2006)
Role of histamine as a putative inhibitory transmitter in the honeybee antennal
lobe. Front Zool 3:22.
・キノコ体
Erber J, Masuhr TH, Menzel R (1980) Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol Entomol 5:343-358.
Fukushima R, Kanzaki R (2009) Modular subdivision of mushroom bodies by Kenyon cells in the silkmoth. J Comp Neurol 513:315-330.
Mizunami M, Weibrecht JM, Strausfeld NJ (1998) Mushroom bodies of the cockroach: Their participation in place memory. J Comp Neurol 402:520-537.
Okada R, Ikeda J, Mizunami M (1999) Sensory responses and movement-related activities in extrinsic neurons of the cockroach mushroom bodies. J Comp Physiol A 185:115-129.
Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359-365.
Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265-291.
Zars T, Fischer M, Schulz R, Heisenberg M (2000) Localization of a short-term memory in Drosophila. Science 288:672-675.
・前大脳側部
Broughton SJ, Kitamoto T, Greenspan RJ (2004) Excitatory and inhibitory switches for courtship in the brain of Drosophila melanogaster. Curr Biol 14: 538-547
Heimbeck G, Bugnon V, Gendre N, Keller A, Stocker RF (2001) A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci U S A 98: 15336-15341
Homberg U, Montague RA, Hildebrand JG (1988) antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res 254:255-281.
Jefferis GS, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR Jr, Luo L (2007) Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128:1187-1203.
Kido A, Ito K (2002) Mushroom bodies are not required for courtship behavior by normal and sexually mosaic Drosophila. J Neurobiol 52: 302-311
Malun D, Waldow U, Kraus D, Boeckh J (1993) Connections between the deutocerebrum and the protocerebrum, and neuroanatomy of several classes of deutocerebral projection neurons in the brain of male Periplaneta americana. J Comp Neurol 329:143-162.
Marin EC, Jefferis GS, Komiyama T, Zhu H, Luo L (2002) Representation of the glomerular olfactory map in the Drosophila brain. Cell 109:243-255.
Nishino H, Mizunami M (1998) Giant input neurons of the mushroom body: intracellular recording and staining in the cockroach. Neurosci Lett 246: 57-60
Nishino H, Yamashita S, Yamazaki Y, Nishikawa M, Yokohari F, Mizunami M (2003) Projection neurons originating from thermo- and hygrosensory glomeruli in the antennal lobe of the cockroach. J Comp Neurol 455: 40-55
Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297: 359-365
Strausfeld NJ, Li Y (1999) Organization of olfactory and multimodal afferent neurons supplying the calyx and pedunculus of the cockroach mushroom bodies. J Comp Neurol 409: 603-625.
Wang Y, Chiang AS, Xia S, Kitamoto T, Tully T, Zhong Y (2003) Blockade of neurotransmission in Drosophila mushroom bodies impairs odor attraction, but not repulsion. Curr Biol 13: 1900-1904
Wong AM, Wang JW, Axel R (2002) Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229-241.
Yamazaki Y, Nishikawa M, Mizunami M (1998) Three classes of GABA-like immunoreactive neurons in the mushroom body of the cockroach. Brain Res 788: 80-86
・側副葉
・中心複合体
Hanesch U, Fischbach KF, Heisenberg M (1989) Neuronal architecture of the
central complex in Drosophila melanogaster. Cell Tissue Res
257:343-366.
Homberg U (1994) Flight-correlated activity changes in
neurons of the lateral accessory lobes in the brain of the locust Schistocerca
gregaria. J Comp Physiol A 175:597-610.
Liu G, Seiler H, When A, Zars T,
Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two visual
features in the Drosophila brain. Nature 439:551-556.
Neuser K, Triphan
T, Mronz M, Poeck B, Strauss R (2008) Analysis of a spatial orientation memory
in Drosophila. Nature 453:1244-1247.
Weinrich A, Kunst M, Wirmer A,
Holstein GR, Heinrich R (2008) Suppression of grasshopper sound production by
nitric oxide-releasing neurons of the central complex. J Comp Physiol A
194:763-776.
Young JM, Armstrong JD (2009) Structure of the adult central
complex in Drosophila: Organization of distinct neuronal subsets. J Comp Neurol
518:1500-1524.
・視葉
水波誠 昆虫-驚異の微小脳 中公新書(2006年)
Fischbach KF, Dittrich APM. (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type straucture. Cell Tissue Res. 258:441-475.
Heisenberg M. (1998) What do the mushroom bodies do for the insect brain? an introduction. Learn Mem.5:1-10.
Heisenberg M. (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci. 4(4):266-75.
Kolodziejczyk A, Sun X, Meinertzhagen IA, Nässel DR. (2008) Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLoS One. 7;3(5):e2110.
Takemura SY, Lu Z, Meinertzhagen IA. (2008) Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol. 509(5):493-513.
Sinakevitch I, Strausfeld NJ. (2006) Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. J Comp Neurol. 494(3):460-75.
Homberg U, Hildebrand JG. (1989) Serotonin immunoreactivity in the optic lobes of the sphinx moth Manduca sexta and colocalization with FMRFamide and SCPB immunoreactivity. J Comp Neurol. 8;288(2):243-53.
Nassel DR. (1991) Neurotransmitters and neuromodulators in the insect visual system. Prog Neurobiol. 37(3):179-254.
Settembrini BP, Coronel MF, Nowicki S, Nighorn AJ, Villar MJ. (2007) Distribution and characterization of nitric oxide synthase in the nervous system of Triatoma infestans (Insecta: Heteroptera). Cell Tissue Res. 328(2):421-30.
・
匂いの識別機構
Aungst, J. L., Heyward, P. M., Puche, A. C., Karnup, S. V., Hayar, A., Szabo, G. & Shipley, M. T. (2003) Centre-surround inhibition among olfactory bulb glomeruli. Nature, 426, 623-629.
Bazhenov M, Stopfer M, Rabinovich M, Abarbanel HD, Sejnowski TJ, Laurent G (2001) Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron 30:569-581.
Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HD, Sejnowski TJ, Laurent G (2001) Model of transient oscillatory synchronization in the locust antennal lobe. Neuron 30:553-567.]
Bazhenov M, Stopfer M, Sejnowski TJ, Laurent G (2005) Fast odor learning improves reliability of odor response in the locust antennal lobe. Neuron 46:483-492.
Bhandawat V, Olsen SR, Gouwens NW, Schlief ML, Wilson RI (2007) Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nat Neurosci 10:1474-1482.
Christensen TA, D’Alessandro G, Lega J, Hildebrand JG (2001) Morphometric modeling of olfactory circuits in the insect antennal lobe: I. Simulations of sipiking local interneurons. Biosystems 61:143-153.
Christensen TA, Lei H, Hildebrand JG (2003) Coordination of central odor representations through transient, non-oscillatory synchronization of glomerular output neurons. Proc Natl Acad Sci USA 19:11076-11081.
Christensen TA, Waldrop BR, Harrow ID, Hildebrand JG (1993) Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J Comp Physiol A 173:385-399.
Friedrich RW (2006) Mechanisms of odor discrimination: neurophysiological and behavioral approaches. Trends Neurosci 29, 40-47.
Friedrich RW, Habermann CJ, Laurent G (2004) Multiplexing using synchrony in the zebrafish olfactory bulb. Nat Neurosci 7:862-871.
Friedrich RW, Laurent G (2001) Dynamic optimization of odor representation by slow temporal patterning of mitral cell activity. Science, 291, 889-894.
Hayar, A., Karnup, S., Ennis, M. & Shipley, M. (2004) External tufted cells: a major excitatory element that coordinates glomerular activity. J. Neurosci., 24, 6676-6685.
Ito, I., Ong, R. C., Raman, B. & Stopfer, M. (2008) Sparse odor representation and olfactory learning. Nat. Neurosci. 11, 1177-1184.
Kazawa, T., Namiki, S., Fukushima, R., Terada, M., Soo, K. & Kanzaki, R. (2009) Constancy and variability of glomerular organization in the antennal lobe of the silkmoth. Cell Tissue Res., 336, 119-136.
Krofczik, S., Menzel, R. & Nawrot, M. P. (2008) Rapid odor processing in the honeybee antennal lobe network. Front. Comput. Neurosci., 2, 9.
Laurent, G. (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat. Rev. Neurosci. 3, 884-895.
Linster C, Sachse S, Galizia CG (2005) Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomerul. J Neurophysiol 93:3410-3417.
Matsumoto SG, Hildebrand JG (1981) Olfactory mechanisms in the moth Manduca sexta: response characteristics and morphology of central neurons in the antennal lobes. Proc R Soc Lond B 213:249-277.
Mombaerts, P., Wang, F., Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., Edmondson, J. & Axel, R. (1996) Visualizing an olfactory sensory map. Cell, 87, 675-686.
Namiki, S. & Kanzaki, R. (2008) Reconstructing the population activity of olfactory output neurons that innervate identifiable processing units. Front. Neurosci., 2, 1.
Olshausen B, Field D (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481-487.
Olsen, S. R., Bhandawat, V. & Wilson, R. I. (2007) Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron, 54, 89-103.
Perez-Orive, J., Mazor, O., Turner, G. C., Cassenaer, S., Wilson, R. I. & Laurent, G. (2002) Oscillation and sparsening of odor representations in the mushroom body. Science, 297, 359-365.
Reisenman CE, Heinbockel T, Hildebrand JG (2008) Inhibitory interactions among olfactory glomeruli do not necessarily reflect spatial proximity. J Neurophysiol 100:554-564.
Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M. & Miesenböck, G. (2007) Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell, 128, 601-612.
Staudacher, E. M., Huetteroth, W., Schachtner, J. & Daly, K. C. (2009) A 4-dimensional representation of antennal lobe output based on an ensemble of characterized projection neurons. J. Neurosci. Methods, 180, 208-223.
T
anaka, N. K., Ito, K. & Stopfer, M. (2009) Odor-evoked neural oscillations in Drosophila are mediated by widely branching interneurons. J. Neurosci., 29, 8595-8603.
Uchida N, Mainen ZF (2003) Speed and accuracy off olfactory discrimination in the rat. Nat Neurosci 6:1224-1229.
Vosshall, L. B., Wong, A. M. & Axel, R. (2000) An olfactory sensory map in the fly brain. Cell, 102, 147-159.
Wilson, R. I., Turner, G. C. & Laurent, G. (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366-370.
Yokoi M, Mori K, Nakanishi S (1995) Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc Natl Acad Sci USA 92:3371-3375.
・匂い源探索行動を解発する神経機構
神崎亮平 (2009) ロボットで探る昆虫の脳と匂いの世界-ファーブル昆虫記の謎に挑む- フレグランスジャーナル社 2009年
Kanzaki
R, Ikeda A, Shibuya T. (1994) Morphology and physiology of pheromone-triggered
flipflopping descending interneurons of the male silkworm moth, Bombyx mori. J
Comp Physiol A. 175:1-14.
Mishima T, Kanzaki R. (1999) Physiological and
morphological characterization of olfactory descending interneurons of the male
silkworm moth, Bombyx mori. J Comp Physiol A. 184:143-160.
Iwano M, Hill
ES, Mori A, Mishima T, Mishima T, Ito K, Kanzaki R. (2010) Neurons associated
with the flip-flop activity in the lateral accessory lobe and ventral
protocerebrum of the silkworm moth brain. J Comp Neurol.
518(3):366-88.
髙嶋聰・加沢知毅・神崎亮平:昆虫の嗅覚系全脳シミュレーション (2009)
電気学会誌 129(12):808-811.
カイコ遺伝子・嗅覚受容・行動制御
Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P.: Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector, Nat. Biotechnol. 18, 81-84 (2000).
Imamura M, Nakai J, Inoue S, Quan GX, Kanda T, Tamura T.: Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori, Genetics, Vol. 165 (2003) pp. 1329–1340.
Tamura, T., Kuwabara, N., Uchino, K., Kobayashi, I., & Kanda, T. An improved DNA injection method for silkworm eggs drastically increases the efficiency of producing transgenic silkworms. J. Insect Biotechnol. Sericol, 76, 155-159 (2007).
Imamura M, Nakai J, Inoue S, Quan GX, Kanda T, Tamura T.: Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori, Genetics 165, 1329-1340 (2003).
International Silkworm Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 38, 1036-1045 (2008).
Yamagata, T., Sakurai, T., Uchino, K., Sezutsu, H., Tamura, T. and Kanzaki, R. GFP labeling of neurosecretory cells with the GAL4/UAS system in the silkmoth brain enables selective intracellular staining of neurons. Zool. Sci. 25, 509-516 (2008).
Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P. and Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940-13945 (2003).